

DHSS .NET Development Manual -- FINAL
Introduction and Table of Contents

This document contains the .NET applications development practices to be used by Delaware Health &
Social Services' developers (both employee and contract). The maintainer of this document is the IRM
Base Technology group. Please direct any questions, comments, or suggestions for change to the
maintainer at dhssinfo@state.de.us or (302) 255-9150.

Consistent programming and development patterns are among the most important elements of
predictability and discoverability in a managed class library. Widespread use and understanding of these
standards should help eliminate unclear code and make it easier for developers to understand shared
code. Though the methods described here depart from what has often been used at DHSS in the past
(in particular, largely eschewing the use of so -called "Hungarian Notation"), it should be
noted that these reflect the prevailing practices throughout the .NET community and that following a
similar standard will make it easier when reading and evaluating code from sources outside DHSS.

It is assumed that the reader of this document has at least some familiarity with the general principles of
.NET development including C#, HTML, and ASP.NET. Also, the reader is expected to have some
familiarity with the principles of database use, including at least basic SQL skills.

This manual is divided into the following sections:

z General Guidelines

{ Introduction (this page)
{ General .NET Programming Principles
{ .NET Naming Guidelines
{ .NET Coding Guidelines
{ .NET Code Formatting
{ Database Object Naming Guidelines
{ SQL Coding Guidelines
{ .NET Applications Architectural Guidelines
{ Page/Form Design Guidelines
{ ASP.NET/HTML/XML Coding Guidelines
{ ASP.NET/HTML/XML Code Formatting
{ .NET Commenting Guidelines
{ Accessibility Guidelines
{ Application Testing Guidelines and Procedures
{ Vendor/Contractor Guidelines

z The DHSS Framework
{ DHSS Unified Application Authentication and Authorization
{ Securing Web Services at DHSS

z Appendices
{ Appendix A: Definitions
{ Appendix B: Tools
{ Appendix C: Hungarian Notation Prefixes
{ Appendix D: Recommended Sources for Further Information
{ Appendix E: DHSS Global Assemblies
{ Appendix F: Web Services Extensions at DHSS
{ Appendix G: Frequently Asked Questions about DHSS .NET Development

DHSS .NET Development Manual
General .NET Programming Principles
Introduction

This section describes the general philosophy of .NET programming at DHSS and indicate the mind set
for the entire DHSS .NET Development Manual. However, even though this was written
specifically with .NET in mind, most of the ideas apply to programming in any environment. Therefore,
you may have been instructed to follow the practices of this manual even though you are not working in
.NET. If there is any question about what portions apply to your work, you should address them
immediately to the IRM Applications Manager with whom you are working. Developers working
in .NET must always assume that all portions apply to their work.

Exceptions to this Manual

In general, employees and contractors will not be allowed to vary their practices from the methods
described in this manual. However, in the event that a practice is completely unfeasible in a specific
application, there is a procedure for requesting a variance. A written request naming the requirement (s)
to be waived must be submitted, in advance, to the DHSS Manager of Base Technology. The
request must also include a detailed description of why the requirement(s) is/are unworkable. The
exception will be evaluated by the DHSS Manager of Base Technology, the IRM Applications
Manager responsible for the project, the IRM Director of Applications, and the Director of IRM. Only if all
of those parties agree will the exception be granted.

In some portions of this manual, specific mention is made of the exception policy. This is not to imply
that other portions are not required to follow the same policy, it is simply a reinforcement on what have
proven to be common questions.

If an exception is granted, it will only apply under the specific circumstances for which is was granted.
This means that simply because an exception was granted in the past does not mean that it will be given
again. Work must never be done based on the assumption that an exception will be granted.

Note that the circumstances for an exception must be profound and pose a significant risk to a project to
be granted. Things such as simple aesthetic concerns, past habits, and so on are not considered valid
reasons for exceptions.

Finally, be aware that willful and/or habitual disregard for the practices of this manual could result in
disciplinary action.

The Act of Coding

Always create code that is clear and easy to follow. This means naming identifiers carefully so that
others can later read code with a minimum of effort, it means formatting code carefully and
consistently for the same reason, it also means that a programmer should always write as little code as
is required to completely perform a given task. This does not mean that typing should be avoided (i.e.,
by using short identifier names and so on) but rather that unnecessary steps are avoided and that each
line of code has a specific and necessary purpose.

Never perform optimization during initial coding. Never assume that a given piece of code will execute
too slowly. Every situation is unique and it may be that your assumptions are faulty. Rather, write
code that is as easy to follow as possible and then, if a problem is discovered, optimize later. In many
cases (often, all cases), optimization may not be required at all in your application. Speed is always the
final consideration of an application. Though it seems very important on the surface, it is perhaps the

least important of the factors that a programmer should consider.

The most important factors in considering the creation of code are correctness, accuracy and
reliability. Programs are correct when they satisfy their requirements specification and meet the
project's objectives. A program is accurate when it produces the proper answer to the proper degree
of resolution. Finally, a program is reliable when given a predictable set of operating conditions, it will
not fail.

After these factors, the next most important goal of good programming is maintainability. A program
that is not maintainable is like a car that has had the hood welded shut. Though it may run for the
moment, if it breaks down, nothing can be done to fix it.

Maintainability is also the factor over which a programmer has the greatest control. Failure to follow
proper guidelines and standards is the root cause of a lack of maintainability. Therefore, study this
manual carefully and insure that all code you write conforms with its requirements.

Note: some developers have the habit of writing code however they wish with the intent of "fixing it at the
end of the project when I have more time... ." This practice is unacceptable. There is usually little, if any,
time left at the end of projects, therefore if the code is not written properly from the beginning, it will likely
never be corrected. Additionally, it is usually the case that this practice will generate more
work. Naming an object properly from the beginning and then using that name is far easier than
naming it incorrectly, using the incorrect name in dozens of places and then returning to correct all of
those instances at a later date.

.NET Language Guidelines

The standard language of choice for DHSS .NET applications is C#. C# was selected by DHSS after
careful consideration because of its strong feature-set and sound design.

In general, all DHSS .NET applications must be composed entirely of ASP.NET Web Forms.
Windows Forms applications will only be allowed in very specific instances if the particular situation of
an application warrants their use (such as an application that needs to have tight integration with the
client workstation operating system). Using Web Forms means that applications will be more readily
accessible to non -Windows platforms. Aesthetic concerns will not be considered sufficient cause to
waive this policy. Whether or not you can use Windows Forms will be governed by the general
exception policy.

Programmatic code attached to pages in DHSS .NET applications must be encapsulated in "code
behind" files. This practice helps keep code as readable as possible and enhances maintainability.

Layered Application Design

The logical architecture of a DHSS .NET Applications requires, at a minimum, three distinct layers.
They are the presentation/user interface layer, the business layer, and the data layer. The nature of
these layers is described more fully in the section ".NET Applications Architectural Guidelines".

Distributed Processing Design
A distributed processing model is the required physical architecture for all DHSS .NET Applications.
There are a minimum of four types of machines involved in this architecture: the client (i.e., the enduser
personal computer running a web browser), the web farm, the application farm, and the
database cluster. This is a common industry model for applications deployment and is described more
fully in the section ".NET Applications Architectural Guidelines".

The Relationship of Logical and Physical Architectures

A simplified view of the relationship between the two architectures is that the presentation layer
resides on the web farm, and the business and data layers on the application farm. Communication
between the presentation and business layers is required to use .NET XML Web Services and
communication occurs between the data layer and the database cluster via stored procedures. This
usage enforces loose coupling between the layers and helps to provide a more secure and robust
environment for execution.

Scoping

Proper scoping practices are vital to the creation of maintainable applications. In brief, an identifier is
properly scoped if its level of accessibility does not violate the known interface of the code module and a
identifier should always be scoped as small as possible. Examples of improper scoping are the use of
side-effects and global variables. Identifiers should always be as narrowly scoped as possible to prevent
unpredictable results in their use.

Variable Guidelines

To conserve resources, be selective in the choice of data type to ensure the size of a variable is not
excessively large.

Keep the lifetime of variables as short as possible when the variables represent a finite resource for
which there may be contention, such as a database connection.

Avoid the use of forced data conversion, sometimes referred to as variable coercion or casting, which
may yield unanticipated results. This occurs when two or more variables of different data types are
involved in the same expression. When it is necessary to perform a cast for other than a trivial
reason, that reason should be provided in an accompanying comment.

Module Guidelines

Divide source code logically between physical files. Always break large, complex sections of code
into smaller, comprehensible modules.

Modules and routines should be used for one and only one purpose. In addition, avoid creating
multipurpose routines that perform a variety of unrelated functions.

Stateless components are preferred when scalability or performance are important. Design the
components to accept all the needed values as input parameters instead of relying upon object
properties when calling methods. Doing so eliminates the need to preserve object state between
method calls.

Input Validation
Always use both server side and client side validation. Client side validation is important in making
applications as responsive as possible and in increasing scalability by reducing round trips to the web
server. Since some users do disable client side scripting and because older browsers may not
support client side scripting at all, server side validation must be provided as well to prevent the entry of
incorrect data.

If a validation requires interaction with the database, write the business logic into a business logic
layer component accessed via a web service and have the web service method return the success or
failure of the validation.

Continuing...

The remainder of the DHSS .NET Applications Manual contains a great deal of information that
expounds on the general ideas of this section and all developers working on DHSS .NET Applications
should become intimately familiar with its contents.

DHSS .NET Development Manual
.NET Naming Guidelines
General Naming Guidelines

The following rules apply to the creation of any identifier in code:

z Avoid abbreviations. When you must use abbreviations, use those that are well known by
convention (such as ID for "Identification Number") or be entirely consistent in your use of a
given abbreviation.
z Never begin identifiers with numerals.
z Underscore characters are only allowed in a few specific places. If the entity type you are

naming does not explicitly state that you may use underscores, do not.
z Any acronyms of three or more letters should be Pascal case, not all caps.
z For true "throw away" loop counter variables i, j, and k are acceptable as they are well known to all
programmers. If such a variable is seen, it will be assumed to be only a loop counter. If a
variable will be used for any purpose other than only a loop counter, the minimum name length is six
characters. It is recommended that identifiers be at least ten characters though for all but the simplest
of entities.
z When naming elements, avoid commonly misspelled words.
z Do not use typographical marks to identify data types, such as $ for strings or % for integers. z
File and folder names, like procedure names, should accurately describe their purpose.
z Do not reuse names for different elements, such as a routine called ProcessSales() and a
variable called ProcessSales.
z Avoid homonyms, such as write and right, when naming elements to prevent confusion during
code reviews.

General Variable Guidelines

z Append computation qualifiers (Avg, Sum, Min, Max, Index) to the end of a variable name
where appropriate.
z Use complementary pairs in variable names, such as min/max, begin/end, and open/close.
z Since most names are constructed by concatenating several words, use mixed -case formatting to
simplify reading them. In addition, to help distinguish between variables and routines, use Pascal
casing (CalculateInvoiceTotal) for routine names where the first letter of each word is capitalized. For
variable names, use camel casing (documentFormatType) where the first letter of each word except
the first is capitalized.
z Boolean variables which imply a true/false or yes/no value must begin with the word "Is", i.e.,
isFileFound.
z Avoid using terms such as Flag when naming status variables, which differ from Boolean

variables in that they may have more than two possible values. Instead of documentFlag, use a
more descriptive name such as documentFormatType.

z Even for a short -lived variable that may appear in only a few lines of code, still use a meaningful
name.
z For constants, use all uppercase with words separated by underscores. Use a grouping naming
schema. Example: (for group AP_WIN): AP_WIN_MIN_WIDTH, AP_WIN_MAX_WIDTH,
AP_WIN_MIN_HIGHT.
z Do not use literal numbers or literal strings, such as for (i = 1; i <= 7; i++). Instead, use named
constants, such as for (i = 1; i <= NUM_DAYS_IN_WEEK; i++) for ease of maintenance and
understanding.

Classes and Structs

Pascal case.

[Code Example]

public class FileStream
public class Button
public class String

z Name classes with nouns or noun phrases that describe their purpose.
z Classes should not have the same name as the namespace in which they reside.
z Avoid using class names that duplicate commonly used .NET Framework name
 spaces and custom name spaces, for example system, Collections, Forms, UI,

Imports, etc.
z Do not use a type prefix, such as C for class, on a class name. For example, use the
 class name FileStream rather than CFileStream.
z Occasionally, it is necessary to provide a class name that begins with the letter "I",

even though the class is not an interface. This is appropriate as long as "I" is the first
letter of an entire word that is a part of the class name. For example, the class name
IdentityStore is appropriate.

z Where appropriate, use a compound word to name a derived class. The second part
 of the derived class's name should be the name of the base class. For example,
 ApplicationException is an appropriate name for a class derived from a class named
 Exception, because ApplicationException is a kind of Exception. Use reasonable
 judgment in applying this rule. For example, Button is an appropriate name for a
 class derived from Control. Although a button is a kind of control, making Control a
 part of the class name would lengthen the name unnecessarily.
z Business Entity (BE) Classes (also called Data Transfer Objects) are a special case

of class/structure that should always have the suffix "Data" appended to their
names. These names should also almost always be singular since they represent a
single collection of data elements. For example, the BE structure for a database table
called "Employees_T1" would be called "EmployeeData".

Namespaces

Pascal case.

z Always begin namespaces for DHSS applications with the prefix "Dhss".
z The second component of the namespace name must always be the "application
name". This name should be decided at the beginning of the project and used
throughout. Note that this name may be English words or an acronym.
z The third component of the namespace name should be established according to
the following:

Role Component Example
Browser Based
UI/Pages

Web Dhss.<division>.<AppName>.Web

Web Service Proxy
Classes

Web.ServiceProxies Dhss.<division>.<AppName>.Web.ServiceProxies

User Controls Web.UserControls Dhss.<division>.<AppName>.Web.UserControls
Business Logic Layer
Components

BusinessLogic Dhss.<division>.<AppName>.BusinessLogic

Web Services/.NET
Remoting Facade

Facade Dhss.<division>.<AppName>.Facade

Data Access Layer
Components

DataAccess Dhss.<division>.<AppName>.DataAccess

Common Application
Components

Common Dhss.<division>.<AppName>.Common

Business Entity Common.DataModel Dhss.<division>.<AppName>.Common.DataModel

z Separate logical components with periods, as in Microsoft.Office.PowerPoint.
z There are a number of namespaces that contain general components for use by all
 DHSS applications. These are contained within the DHSS.Framework namespace.
 Additions to this namespace can only be made with the approval of the DHSS
 Base Technology group.
z Use plural namespace names if it is semantically appropriate. For example, use

System.Collections rather than System.Collection. Exceptions to this rule are brand
names and abbreviations. For example, use System.IO rather than System.IOs.

z Do not use the same name for a namespace and a class. For example, do not
 provide both a Debug namespace and a Debug class.

Assemblies

Pascal case. If the assembly contains a single name space, or has an entire self-
contained root namespace, name the assembly the same name as the namespace. By
convention, the ".dll" extension is always in lower case.

[Example]

Kronos.TimeCard.BusinessRules.dll

Collection Classes

Follow class naming conventions, but add "Collection" to the end of the name.

 [Code Example]

public class WidgetCollection

Delegate Classes

Follow class naming conventions, but add "Delegate" to the end of the name.

 [Code Example]

public class WidgetDelegate

Exception Classes

Follow class naming conventions, but add "Exception" to the end of the name.

 [Code Example]

public class WidgetException

Attribute Classes

Follow class naming conventions, but add "Attribute" to the end of the name.

 [Code Example]

public class WidgetAttribute

Interfaces

Follow class naming conventions, but start the name with "I" and capitalize the letter
following the "I". Use similar names when you define a class/interface pair where the class is
a standard implementation of the interface. The names should differ only by the "I"
prefix on the interface name.

[Code Example]

public interface IServiceProvider
public interface IFormatable

Enumerations

Follow class naming conventions.

z Do not use an Enum suffix on Enum type names.
z Use a singular name for most Enum types, but use a plural name for Enum types
that are bit fields.

Functions and Methods

Pascal case, no underscores except in event handlers. Functions and subs must differ by
more than case to be usable from case -insensitive languages like Visual Basic.NET. Use
verbs or verb phrases. Methods/functions with a return value should have a name
describing the value returned, such as GetObjectState().

[Code Example]

RemoveAll()
GetCharArray()
Invoke()

Procedure-Level Variables (i.e., local variables), Method Arguments and Function
Parameters

Camel case.

[Code Example]

int CaculateAge(int yearOfBirth){}
int milesToGo

z Use descriptive names. Names should be descriptive enough that the name of the
object and its type can be used to determine its meaning in most scenarios.
z Use names that describe an object's meaning rather than names that describe a
object's type. Development tools should provide meaningful information about a
object's type. Therefore, a object's name can be put to better use by describing
meaning.
z Do not use reserved object names.

Class-Level Private and Protected Variables/Members

Camel case with a leading "m_".

[Code Example]

public class Person
{

int m_employeeNumber;
string m_firstName;
int m_age;

public void IncreaseSalary()
{

}

public void TerminateEmployee()
{

}

}

Properties and Public Member Variables

Pascal case. Members must differ by more than case to be usable from case -insensitive
languages like Visual Basic.NET.

[Code Example]

Widget.Color, Widget.Height

Static Fields

Pascal case. Use nouns or noun phrases to name static fields.

Visual Controls on Forms

Modified Hungarian Notation using .NET class names. See the appendix at the end of this
document for a list of the most common prefixes.

txtUserID, lblHeader, lstChoices, btnSubmit

Events

Pascal case. Always end with "EventHandler".

 [Code Example]

public delegate void MouseEventHandler(object sender, MouseEventArgs
e);

DHSS .NET Development Manual
.NET Coding Guidelines
General Guidelines

z Use case/switch statements in lieu of repetitive checking of a common variable using if...else if
 statements.

z Never hard code strings that might change based on deployment, such as connection strings.
z When building a long string, use StringBuilder, not String.
z With the exceptions of property accessors, constructors and overloaded operators, avoid

 providing methods in structures.
z Explicitly release dynamically created non-primitive object references.
z Divide source code logically between physical files. There must never be more than one class

 defined in a file.
z If a source file contains more than 500 lines or if an individual method contains more than 25

 lines, evaluate them for possible modularization.
z Break large, complex sections of code into smaller, comprehensible modules.
z Always declare local variables as close as possible to their first use.
z Always use zero -based arrays.
z Always explicitly initialize an array of reference types using a for loop.

[Code Example]

public class MyClass
{}

MyClass[] array = new MyClass[100];
for(int i = 0; i < array.Length; i++)
{

array[i] = new MyClass();
}

z Do not put any logic inside AssemblyInfo.cs
z

z Do not put any assembly attributes in any file besides AssemblyInfo.cs
z Populate all fields in AssemblyInfo.cs such as company name, description, etc.. z
All assembly references should use a relative path.
z Always run code unchecked by default (for performance), but explicitly in checked mode for
overflow or underflow prone operations.

[Code Example]

public int CalcPower(int number, int power)

{
int result = 1;
for(int i = 1; i <= power; i++)
{

checked
{

result *= number;
}

}

return result;
}

z Avoid explicit code exclusion of method calls (#if...#endif). Use conditional methods instead.

 [Code Example]

public class MyClass
{

[Conditional("MySpecialCondition")]
public void MyMethod()
{
}

}

Classes and Structs

z Provide a default private constructor if there are only static methods and properties in a class.
This prevents classes from being created when they should not be.
z Minimize the amount of work done in the constructor. Constructors should not do more than
capture the constructor parameter or parameters. This delays the cost of performing further
operations until the user uses a specific feature of the instance.
z It is recommended that you not provide an empty constructor for a value type struct. If you do not
supply a constructor, the runtime initializes all the fields of the struct to zero. This makes array and
static field creation faster.
z Use parameters in constructors as shortcuts for setting properties. There should be no

difference in semantics between using an empty constructor followed by property set accessors,
and using a constructor with multiple arguments.

z Avoid friend assemblies, as it increases inter -assembly coupling.
z Do not use code that relies on an assembly running from a particular location.

Methods

z Do not create methods with more than seven arguments. If a method requires more data to be
passed to it, use structures/classes to encapsulate the arguments.

Namespaces

z A nested namespace should have a dependency on types in the containing namespace. For
example, the classes in the System.Web.UI.Design depend on the classes in System.Web.UI.
However, the classes in System.Web.UI do not depend on the classes in System.UI.Design. z
Avoid putting a using statement inside a namespace.
z Group all framework namespaces together and put custom or third party namespaces beneath
separated by a space.

[Code Example]

using System;
using System.Collections;
using System.ComponentModel;

using System.Data;

using MyCompmnay;
using MyControls;

Exceptions

z All code paths that result in an exception should provide a method to check for success without
 throwing an exception. For example, to avoid a FileNotFoundException you can call File.Exists.
 This might not always be possible, but the goal is that under normal execution no exceptions
 should be thrown.
z Use a localized description string in every exception. When the user sees an error message, it
 will be derived from the description string of the exception that was thrown, and never from the
 exception class.
z Create grammatically correct error messages with punctuation. Each sentence in the

description string of an exception should end in a period. Code that generically displays an
exception message to the user does not have to handle the case where a developer forgot the
final period.

z Provide exception properties for programmatic access. Include extra information (other than the
 description string) in an exception only when there is a programmatic scenario where that
 additional information is useful. You should rarely need to include additional information in an
 exception.
z Do not use exceptions for normal or expected errors, or for normal flow of control.
z You should return null for extremely common error cases. For example, a File.Open command
 returns a null reference if the file is not found, but throws an exception if the file is locked.
z Only catch exceptions for which you have explicit handling.
z Design classes so that in the normal course of use an exception will never be thrown. In the
 following code example, a FileStream class exposes another way of determining if the end of
 the file has been reached to avoid the exception that will be thrown if the developer reads past
 the end of the file.

[Code Example]

public class FileRead
{

public void Open()
{

FileStream stream = File.Open("myfile.txt", FileMode.Open);
byte b;

// ReadByte returns -1 at end of file.
while ((b = stream.ReadByte()) != true)
{

// Do something.
}

}
}

Enumerations

z Always add the FlagsAttribute to a bit field Enum type. z
Avoid providing explicit values for enums.

Class-Level Private and Protected Variables/Members

z All member variables should be declared at the top, with one line separating them from the
properties or methods.
z Always explicitly specify the protection level of members (i.e., private, public, protected, etc.).

Static Fields

z Use static properties instead of public static fields whenever possible.

Events

z Specify two parameters named "sender" and "e". The sender parameter represents the object
that raised the event and is always of type "Object", even if it is possible to use a more specific type.
The state associated with the event is encapsulated in an instance of an event class
named "e". Use an appropriate and specific event class for the e parameter type, this class always
ends its name with the "EventArgs" suffix.

Debugging

z Asserting is a powerful tool that .NET gives the developer. Developers should always assert
every operational assumption, especially ones where the failure of the action would have
potentially destructive results in a production scenario.

DHSS .NET Development Manual
Database Object Naming Guidelines

Note: though this section is part of the overall .NET Development Manual, its policies do indeed apply to
all applications development at DHSS, regardless of language used for that development.

Object Names

Database objects are composed of a six to thirty character identifier of mixed case followed by an
underscore, a single character object type identifier (upper case), and finally a single digit numeric
used to differentiate similar objects with the same identifier. An example of this would be
"JobTransactions_T1" which indicates the first regular table of the series JobTransactions.

The single character object type identifiers are as follows:

Object Type Code
Regular Table T
Persistent Temporary Tables P
Development Temporary Tables D
Views V
Stored Procedures S
Rules R
Defaults D
Triggers X
Indices/Unique Constraints I
Check Constraints K
User Defined Functions F

Persist ant Temporary Tables are tables where the structure is permanent but the data contained in
those tables is used only in temporary contexts. Examples would be storage tables where processing
may store data during calculations but which may be deleted at any time.

Development Temporary Tables are tables used by developers during their programming. The
identifier for these tables should contain a date in the format YYYYMMDD after which the table may be
safely deleted (for example, JobTransactions20031231_D1).

Another sort of temporary table are those that are literally created on the fly by application code (and
not just populated dynamically). These tables should be named as persistent temporary tables.

Field Names

Field names are now composed of a six to thirty character identifier of mixed case, followed by an
underscore, followed by a three to four character data type indicator in all uppercase letters (see list of
approved codes at the end of this document.) For example: First_NAME.

Additionally, field names should always differ by more than simply the data type suffix. An example of the
incorrect behavior would be if two fields were named Service_CODE and Service_IDNO. Instead,
create distinct names which will help prevent using the wrong field during programming. A correct

example would be ClientService_IDNO and ServiceType_CODE.

General Notes

The database conventions apply irrespective of what development language is used for an
application.

When working in the mainframe environment "mixed-case" is not available, therefore substitute all
single case.

New applications should always use the standards outlined in this document, existing applications
may choose one of three options. 1) Continue with current naming scheme. 2) Use a "hybrid" scheme of
the node number + the new naming scheme (applies only to mainframe applications.) 3) Convert to total
usage of the new naming scheme.

Certain database platforms (such as MVS/DB2) may impose size restrictions on names, in those
cases, the maximum name length should be considered as the upper limit in your code.

Data Descriptor Suffixes

Data Descriptor

Address

Amount

Code

Date

Date -time

Flag

Group

Identification
Number

Indicator

Key

Location

Name

Number

Percent

Quantity

Text

Suffix

ADDR

AMNT

CODE

DATE

DTTM

FLAG

GRP

IDNO

INDC

KEY

LCTN

NAME

NUMB

PCT

QNTY

TEXT

Usage

Standard mailing address data

Any quantity of money.

Data which identifies classifications or groups of entities.

Actual calendar day or group of days (i.e. month and year).

actual calendar day or group of days (i.e. month and year)
plus any unit of time not considered a date.

Binary valued indicator (i.e. y/n).

Group of data addressed as a unit.

Non-alphabetic data which identifies a specific entity.

Binary valued indicator (i.e. y/n).

Group of data used as a key field.

Geographic positioning data.

Alphanumeric data that identifies a specific entity.

Numeric data that identifies a specific entity.

Ratio between data values expressed as a percentage.

An amount of anything other than money.

Free form character data.

Time TIME Any unit of time other than date.

Image IMG Image binary data (gif, jpg, etc).

Binary Code BIN Non-image binary data (doc, xls, etc).

E-mail Address EML Text representation of e-mail address.

URL URL Internet address, uniform resource locator.

Bit BIT Numeric binary (i.e., 1 or 0).

Policies Specific to DB2 Database Development

The DB2 for MVS platform at DHSS does have a small number of other restrictions. Most notably,
database object names are limited to 18 characters in length, which means that when creating names for
objects, you must account for that smaller allowed amount. In addition, DB2 tables are prefixed with a
structure of the form "T999_" where the "999" varies according to the application to which the tables
belong. The DHSS database administrators will be able to provide developers with the
appropriate prefix for their application(s).

Special Note on the Use of varchar Fields

Though not actually an object naming consideration, there are some special concerns around the use of
varchar type fields in a DB2 database. Though there is functionally very little difference between char and
varchar type fields in SQL Server, there is an important distinction between the two in DB2. Developers
used to working in SQL Server should be aware of this distinction and design their
databases appropriately in DB2.

Fields typed as varchar in DB2 are used on a far smaller scale than in SQL Server. This is mainly due to
differences in the way that DB2 allocates space for data. What this means in effect is that there are a few
general rules that should be used when considering the creation of a varchar field in DB2.

1. If a field's total length is less than 40 characters, use char .
2. If a field can be greater than 40 characters but generally the data inserted into the field will be
 fairly close to the maximum allowed, use char.
3. If varchar fields are to be used, then position them at the end of a table's definition.

There is, of course, always the possibility of exceptions to these rules. If a developer finds such a
situation, it should be discussed with DHSS database administration staff BEFORE implementing it in
the database.

Stored Procedure Naming Considerations in MS SQL Server Databases

The general rule for naming stored procedures in an MS SQL Server database is the table name that the
stored procedure operates on without the object suffix, and underscore, the name of the operation
performed and the finally an "_S1" suffix. For example, a procedure which searches the Users_T1 table
would be named Users_Search_S1. Naming stored procedures in this manner is required as it allows for
the group of procedures that operate on a table to be readily identified.

There are three stored procedure operations that are extremely common in DHSS applications and, in
fact, generally constitute the bulk of stored procedures defined in a database. The operations
concerned are ones that retrieve a single record based on a primary key, insert a new record and
update an existing record. Since these are so common, there are specific rules governing their
naming. Use the following table to determine the appropriate name for your stored procedure of these
types:

Operation Table Name Required SP Name
Retrieve Users_T1 Users_Retrieve_S1

Insert Users_T1 Users_Insert_S1

Update Users_T1 Users_Update_S1

The table names provided above are simply examples, and should be replaced as appropriate with
the table with which your stored procedures work.

In addition to the names of the stored procedures themselves, there are also standards for the names
and types of stored procedure parameters. Parameters must be named the same thing as any fields that
they are matched against AND match that field's datatype. The parameter will be distinguished from the
field by the parameter prefix @ which is a requirement in MS SQL Server stored procedures. Therefore,
if a stored procedure requires a parameter that will be matched against (or inserted into, or used to
update) a field name First_NAME which is a varchar(50), the stored procedure parameter will be called
@First_NAME and also have a type of varchar(50).

If a parameter is not directly matched against a field in a stored procedure, it may be named as the
programmer wishes, as long as the general rules for naming fields are followed (i.e., an identifier
followed by an underscore and a descriptor suffix).

DHSS .NET Development Manual
SQL Coding Guidelines

This section includes information on both proper design practices for SQL Programming and how to
format your SQL code so that it conforms to established DHSS guidelines.

SQL Programming Guidlines

z Use DHSS Database object naming standards in databases. Refer to the section of this manual
 titled "Database Object Naming Guidelines" for more information.
z Never use SELECT *. Always be explicit in which columns to retrieve and retrieve only the
 columns that are required.
z In INSERT statements, always list the fields to be inserted explicitly, do not rely on the natural
 order of fields to do an insert. This will insure that your statements will not have unpredictable

behavior should the structure of the table ever change.
z Refer to fields explicitly; do not reference fields by their ordinal placement in a recordset. (Do
 not refer by the recordset column numbers).
z Verify the row count when performing DELETE and UPDATE operations.
z If possible, specify the primary key in the WHERE clause when updating a single row.
z Use forward-only/read -only recordsets. To update data, use SQL INSERT and UPDATE
 statements.
z Never hold locks pending user input. Use optimistic concurrency to control "clobbering" of
 update operations by users.
z Use uncorrelated subqueries instead of correlated subqueries. Uncorrelated subqueries are
 those where the inner SELECT statement does not rely on the outer SELECT statement for
 information. In uncorrelated subqueries, the inner query is run once instead of being run for
 each row returned by the outer query.
z Never placed embedded SQL statements directly in application code. Write SQL statements in

stored procedures and call them from a web service method.
z Always fully qualify field names in SQL with either the actual table name or a table alias that you
 define in your SQL code (with the table alias being the preferred method). This will insure that
 there are no ambiguities in your SQL code.
z Do not open data connections using a specific user's credentials. Connections that have been
 opened using such credentials cannot be pooled and reused, thus losing the benefits of
 connection pooling. The user information will be stored in web.config for on the component
 server.
z Any interaction with your database(s) must be from a web service. In the production

environment, the web services will be running in a component server that will not be in a DMZ.
This way the interaction of the web service to the database is hidden from the public.

z DDL scripts must always be saved into files and structural changes to the database always
 made through these scripts. Enterprise Manager GUI functions cannot be used to make
 production database changes, therefore any such changes must be accompanied by a DDL
 script which creates/changes the object in question and appropriately sets permissions for the
 object.
z Parameters to SQL statements must always be supplied via bind variables and not through

concatenating a string together that contains the values to be input. This insures that SQL code is
more readable and prevents the use of so-called "SQL Injection" attacks.

z Use RETURN statements in stored procedures to help the calling program know whether the
procedure worked properly. Stored procedures that insert records should return the identity field of
the record inserted (if the table uses identities). Update stored procedures should return the
number of rows affected by the update.

z Stored procedures must never contain business logic. Such processing must take place at your
business layer. Stored procedures are to be limited to a single operation of retrieving, inserting, or

updating data.
z CodeSmith templates exist that have been set up to generate and properly format common
stored procedures based on the database structure. These templates are available upon request
from the DHSS Manager of Base Technology.

SQL Code Formatting Guidelines

When writing SQL statements, use all uppercase for keywords and Pascal case for database
elements, such as tables, columns, and views.

Put each major SQL keyword on a separate line, then its objects (i.e., the fields or other entities on
which it operates) on the following line, indented by one tab space. If there are multiple objects to a
keyword, each should be on a separate line. Major keywords which are dependent on a preceding
keyword should be further indented by one tab space and their objects indented yet another tab
space.

Following are examples of several different types of common SQL statements.

 [Code Example - SELECT Statement]

SELECT

C1.FirstName_TEXT,
 C1.LastName_TEXT
 FROM

Customers_T1 C1
JOIN

Address_T1 A1
 ON

C1.CustomerID_NUMB = A1.CustomerID_NUMB
WHERE

A1.State = 'WA'
AND

AA1.County = 'NC'
ORDER BY

C1.LastName_TEXT,
C1.FirstName_TEXT

[Code Example - Insert Statement]

INSERT INTO

Customers_T1 C1
 (

C1.LastName_TEXT,
C1.FirstName_TEXT
)

VALUES
 (

:lastName,
 :firstName
)

[Code Example - Update Statement]
UPDATE

Customers_T1 C1
SET

C1.LastName_TEXT = :lastName,
C1.FirstName_TEXT = :firstName

WHERE
C1.CustomerID_NUMB = :customerID

[Code Example - Delete Statement]

DELETE FROM

Customers_T1 C1
WHERE

C1.CustomerID_NUMB = :customerID

[Code Example - Stored Procedure Creation Statement]

CREATE PROCEDURE

Customers_Insert_S1
(

@FirstName_TEXT VARCHAR(30),
@LastName_TEXT VARCHAR(30),
@Customer_IDNO INT OUTPUT

)
AS
BEGIN

INSERT INTO
Customers_T1 C1
 (

C1.LastName_TEXT,
 C1.FirstName_TEXT
)

VALUES
 (

@LastName_TEXT,
 @FirstName_TEXT
)

SET

@Customer_IDNO = @@IDENTITY
END

DHSS .NET Development Manual
.NET Applications Architectural Guidelines

1. Introduction
1.1. Goals / Purpose of Document

The goal of this document is to set forth architecture guidelines for application architects and
designers at DHSS. DHSS has established these guidelines in order to facilitate quality software
development through standardization of recommended architectural patterns.

Note that this section is still under construction but it already contains a great deal of information
important to the development of applications at DHSS.

2. Architecture Overview
2.1. What is the DHSS .NET Architecture?

In order to meet the demand of our customers for more complex, more available, and more usable
systems, DHSS has identified the following four requirements as top priorities to be met by the
application architecture.

1. Maintainability: The ease with which a software system or component can be modified to
 correct faults, improve performance, or other attributes, or adapt to a changed environment
 [IEEE 90]. Applications must be flexible enough to adapt to changing or expanding business
 requirements without losing integrity and reliability. Applications must also be constructed in
 such a way that their implementations are comprehendible and navigable by new developers.
2. Availability: The degree to which a system suffers degradation or interruption in its service to
 the customer as a consequence of failures of one or more of its parts [HYPR 04]. The definition
 of availability will change from one client to the next. It is our responsibility to create applications
 that will meet the client's initial requirements for availability and will not fail if that requirement is
 changed.
3. Scalability: How well a solution to some problem will work when the size of the problem

increases [HYPR 04]. The future user base of an application cannot be predicted with certainty at
any point in the development process. Therefore, the application must be built on a sound
architecture that will scale to meet an increased demand.

4. Security : (define security)

2.2. Logical Architecture Overview

"Logical architecture" refers to the organizational choices made by the designer when determining how
to represent the business requirements of an application in code and data. The following figure depicts
the DHSS logical architecture.

Figure 2.1 DHSS Logical Architecture

The logical architecture shows that we have broken the application into three main layers. These
layers are Presentation, Business, and Data. These layers rest on top of each other and operate in a
top-down manner, such that any given layer only has knowledge of the layer directly beneath it. This
layering approach allows us greater division of labor -- among both employees and system
components. Better maintainability is achieved due to decreased component interdependency. While
the components will be more easily modifiable, they will also be more understandable due to the
principals of layering. Any layer can be understood as a coherent whole without knowing the
implementation details of any other layer. The logical architecture is discussed in detail in section 3.

Take note, this does not imply anything about the physical deployment and distribution of these layers
across client and server machines. The layers must be designed so that they can be distributed, but they
do not require any specific number of physical machines, or tiers , in order to be functional or applicable.
The same reduction in maintenance cost will be seen, even if the entire layered
application is deployed to a single stand-alone machine.

2.3. Physical Architecture Overview

"Physical architecture" refers to the deployment arrangement of an application's components. The
following figure illustrates the standard DHSS physical architecture.

Figure 2.2 DHSS Physical Architecture

The three remaining requirements, availability, scalability, and security, are fulfilled by the physical
architecture. Application availability is gained through use of a redundant clustered design. Our
application is deployed across the web farm, the application farm, and finally, the database cluster. The
failure of any server will not disrupt the application's ability to serve client requests. Scalability is also
accomplished through this clustered architecture, as any given cluster can be scaled out by
dropping in additional servers. An application deployed in this way will also receive an automatic
boost in security since the only exposed components, the user interface, will have no direct access to the
database servers. The physical architecture is discussed in detail in section 4.

3. Logical Architecture

As described above, the logical architecture is composed of 3 layers - user interface, business, and
data access. Each of these layers has a specific set of responsibilities. In each layer, there are
generic object types that only exist in that layer. These object types have been identified through
examination of reoccurring patterns in well-designed modern systems. The following is a detailed
description of each layer and the object types that must be implemented in order to provide its
services.

3.1. The Presentation Layer

3.1.1. User Interface Components

The user interface components (UIC) of an application are what enables user interaction with the
system. It is the responsibility of the UIC to accept data from the user and later output that data as
human-readable information. In the DHSS Application Architecture, these components are primarily
found in the form of .aspx web pages. Web interfaces have been chosen as the standard due to their
inherent potential for scalability, the high availability nature of IIS, and ease of deployment.

It is important to understand that no business logic is contained within these user interface
components. The business logic that might have been present in a non -layered application has been
relocated to the Business Logic Layer. This helps to improve application resiliency and enables
business logic to be reuse from a different user interface, such as a lightweight PDA version or
another related application.

UICs have the following responsibilities:

z Acquiring data from users and performing early data format validation. This may include range,
type, and
z Reacting to a user request by accessing the Business Logic Layer and properly formatting the
retrieved data for the user's consumption.
z Accessing User Process Components to facilitate navigation of complex user interaction cases
such as wizards.
z Rendering the data, usually for a given business entity, to the screen in a format that is
understandable to the user

3.1.2. User Process Components

In order to deal with complex workflows, DHSS will utilize User Process Components (UPC) to help
isolate and encapsulate the details of interface navigation. There may be situations, especially in
wizards, where the next step in a user's interaction with the system is determined by some variable
supplied by the user. These situations are ideal candidates for creation of a UPC. Other times, a long
running business process may need to provide the ability to be persisted at random. The logic that
allows for persistence may be complex and is best isolated in a UPC.

UPCs have the following responsibilities:

z Providing a simple, reusable interface to a complex business workflow. z
Maintaining current state of the workflow-associated data.
z Persisting data as required.

3.2 The Business Logic Layer

Figure 3.1 DHSS Logical Architecture - Detail

3.2.1 Business Logic Components and Remote Facades

The Business Logic Layer (BLL) is home to the majority of the application -specific code. All of the
scenarios that are found in the problem domain must be modeled in the BLL. This includes
calculations of input or stored data, validation of operations attempted by the presentation layer,
transaction enforcement, and determining which data access operations to execute. In order to
provide a loosely coupled design, the BLL must not have any knowledge of the internals of the
presentation layer. Other presentation layers or service layers may be constructed on top of the BLL
without impacting the code found within the BLL.

Ideally, we would like to implement the BLL as a pure object -oriented model of business object
components. A traditional object -oriented approach would involve objects that provide accessor and
modifier functions for each property with the object maintaining its state between these and other
functional calls. For instance, you may set several fields of an object and then call a save method in
order to persist the object's state to a file or database. This is known as a fine -grained interface. An
example follows:

Customer newCustomer = new Customer();

newCustomer.FirstName = "John";
newCustomer.LastName = "Doe";
newCustomer.City = "New Castle";
newCustomer.State = "DE";
newCustomer.Save();

Keeping in mind that the BLL objects are remote from the web server in the DHSS Physical
Architecture (Figure 1.2), it becomes apparent that a fine-grained model won't meet our architectural
goals for two reasons. First, The amount of network traffic caused by repeated calls to accessors and
modifiers will cripple the performance and scalability of our application. Second, remote web services are
by nature stateless, making fine -grained interfaces impossible. In order to solve this problem, we will
follow the Remote Facade [fowler] pattern by creating coarse-grained interfaces that will act as batch-
processing service layers over top of our domain objects. Most often, this will involve the
creation of a business entity communication package that is delivered one time across the network to the
application server. An example follows:

CustomerData newCustomerData = new CustomerData();

// Local business entity, not remote!
newCustomerData.FirstName = "John";
newCustomerData.LastName = "Doe";
newCustomerData.City = "New Castle";
newCustomerData.State = "DE";

CustomerWS.CustomerFacade = new CustomerWS.CustomerFacade()

// The following call crosses the network
CustomerFacade.Save(newCustomerData);

With this approach, the number of network calls has been reduced from five to one.

Business Logic Components have the following responsibilities

z Implementing the core functionality specific to an application. z
Beginning and committing or rolling back transactions.
z Respond to consumers (business facades, other business components) by accessing the Data
Access Layer in order to persist or retrieve data

Remote Facades have the following responsibilities:

z Provide a coarse-grained interface to remote consumers (presentation layer, other applications) for
the business logic components.
z Instantiate and destroy any necessary business logic components for a given operation.

3.2.2 Business Entities

As mentioned above, Business Entities (BE) are used as a means of packaging data for delivery
across layers. They will be used by presentation and business layers. DHSS has elected to use very thin
classes to represent BEs. More like a "smart structure", these classes will only contain properties, data
format validation code, a method to validate, and a method to determine if the data is
"dirty" (changed since last retrieval).

BEs do not contain any business logic beyond data format rules. These data format rules include
required, range, and co-occurence constraints. BEs also do not contain any data access logic. This is
handled by the Data Access Layer.

Business Entities have the following responsibilities:

z Enforce their own data format through use of exceptions.
z Provide their consumer with information regarding broken format rules

3.3 The Data Access Layer

The Data Access Layer (DAL) is the foundation of most information systems. The DAL provides the
ability to persist and later retrieve the application's data through the use of a data store. At DHSS, this
data store is a SQL Server database or databases that is accessed through a stored procedure
interface.

3.3.1 Data Access Logic Components

The stored procedure interface is used by Data Access Logic Components (DALC) that provide a
bridge between our application's business logic and the data store. These DALC most often represent a
1-to-1 relationship with the business entities of the system and are always static classes. Each
business entity will require a regular set of operations -- create, retrieve, update, and delete (CRUD). The
CRUD operations will be used by the BLL in order to satisfy requests from the presentation layer. Data
from the DALC is packaged into BEs and returned to the BLL. This helps to encapsulate the
database and encourages a resilient BLL which is unaware of the actual implementation of the BEs it is
using. Changes affecting the order or names of fields in a database table will not require cascading
changes within the other layers of the application.

In order to enforce standard patterns of interaction with the database, DHSS DALC components will
always use the Microsoft Data Access Application Block (SqlHelper.cs) as an interface to ADO.NET.

Data Access Logic Components have the following responsibilities:

z Provide a stateless interface to CRUD operations for each BE
z Provide more specific operations not related to a single BE, such as multi-table searches z
Provide some level of relational-to-object mapping by returning BE objects

4. Physical Architecture

Once a logical architecture is established, it must be decided how to distribute that architecture
across physical tiers of an operating environment. DHSS has invested a considerable amount of
resources in defining and creating a scalable, secure physical architecture for all applications.

4.1 The Standard DHSS Deployment Pattern

Figure 4.1 DHSS Physical Architecture

Figure 4.1, repeated from figure 2.2, clearly represents the physical deployment guidelines of the
DHSS logical architecture. An explanation of each node follows:

1. Clients: Applications will be developed as ASP.NET web apps and as such the client will be
 required to have a system running an up to date browser supporting HTML 4.01.
2. DMZ Firewall: The DMZ within which the web server resides is protected by this hardware
 firewall.
3. Web Server Cluster: The web cluster will consist of (X) clustered servers and contain all
 ASP.NET user interface components and user process components. The cluster will run
 Windows Server 2003 and IIS 6.0 with the .NET Framework.
4. Internal Firewall:An internal firewall protects the application cluster from the web cluster should
 it be compromised.
5. Standard DHSS Deployment Pattern(s)
6. Hardware & Software Required
7. Communication Policies Between Tiers

System Foundations
1. Security

Explain authentication & authorization model
2. Error Handling

Exceptions - how & where to catch, where to log

DHSS .NET Development Manual
Page/Form Design Guidelines
The following must be considered when designing web forms:

Page Layout and General Principles

z When designing applications, use the DHSS browser based application/interactive web site
templates described later in this document. Use of these standard layout schemes will allow
DHSS to produce consistently attractive and functional applications while allowing for
developers to focus on business functionality rather than design considerations. Furthermore, the
applications templates have been developed using cascading style sheets so that they will
gracefully degrade in older web browsers and leave the applications accessible to user clients that
may be out of date.
z The applications templates have an already established color scheme and usage of this color
scheme is required.
z Do not create graphical elements for use in your application beyond those specified by the

DHSS Forms Template without the explicit permission of the DHSS Manager of Base
Technology. Generally, such graphical elements will not be allowed unless they are required for
good reason.

z Grid layout is not allowed in page design. Use only Flow Layout. The applications template
specifies the use of style sheet positioning to layout elements and this is required. The use of
tables for layout purposes only is not allowed in general and must be approved by the DHSS
Manager of Base Technology on a case by case basis.

z Page titles should be composed thusly: System Name: Sub System Name: Page Name.

Images

z All images must have the alt, width and height attributes defined. z
Use decorative images very sparingly.

Formatting

z <blink> and tags are never allowed.
z Use the template supplied style sheet elements for formatting, creation of new elements must be
approved by the DHSS Manager of Base Technology.
z Provide a location to display validation messages so that they are presented neatly and
consistently positioned.
z Avoid in-line styles.

List Type Controls

z Each list box must show at least four values (or all values if there are less than four). z
Horizontal scroll must be avoided in list boxes.
z List boxes and combo boxes must be wide enough to allow all text to be viewed.
z Every list box or combo box must have a default selection (Blank/null is acceptable for this
purpose if that is indeed a valid entry for the field).

Navigation
z Navigation items must always use links, buttons should only be used for application actions. In
general, navigation items should be restricted to the area presented in the sidebar in the DHSS
Forms Template.

Using the DHSS Template
The DHSS Template is a reference and training .NET solution to guide you through the various aspects of
creating a DHSS Web Application. Please see the document is appended to the end of this document for
more information.

DHSS .NET Development Manual
ASP.NET/HTML/XML Coding Guidelines
Label Tags

All controls should have their respective labels associated with them via use of the <label> tag. In
many cases, Visual Studio will not automatically insert these tags and they must be manually entered
into the HTML code.

[Code Example]

<label for="txtName">User Name</label><input id="txtName">

Working With Dates

The use of calendar controls is not allowed due to the accessibility issues it causes. The data entry of
date values must use the format MM/DD/YYYY.

Controls

User controls should be used when possible to reduce repetitive coding.

Always assign the id attributes of all controls as this allows non -visual web browsers to function more
effectively.

Use Hungarian notation for controls.

Third Party Controls

Third party controls are to be avoided unless absolutely necessary. If a third-party control is required,
written permission must be obtained from the IRM Project Manager in charge of the project and the
DHSS Manager of Base Technology. This policy applies even in the case of "free" third-party
controls.

Note: in some cases, Visual Studio fails to properly follow some of these standards. This is not
sufficient reason for a waiver of these standards. In cases where Visual Studio does not take the
proper action, the code must be corrected manually.

DHSS .NET Development Manual
ASP.NET/HTML/XML Code Formatting
All the tags and attributes in the page must be in all lowercase (to maintain future compatibility).

Each attribute value must be enclosed in quotes (to maintain future compatibility).

DHSS .NET Development Manual
.NET Commenting Guidelines
Properly commented code is crucial to a program's future maintainability. What many programmers
learned early on though in commenting practices was entirely wrong. It was common practice in many
universities and schools to teach that comments should summarize every line of code, in effect,
producing pseudo-code inline with the actual code. This does little though to actually document code in
most cases. Properly written modern code is actually fairly self documenting in the terms of what
pseudo -code provides.

Rather than pseudo -code, code comments should provide plain English descriptions of the activities
taking place in the code and provide metadata about the code in question (i.e., who is the maintainer of
the code, last revisions, and so on). Comments should always be proper and complete sentences. In
addition, every major block of code (method, function, class, etc) should be headed by an
extensive header comment that explains the purpose of the block, its assumptions and the type of
output that one should expect from it.

z When modifying code, always keep the commenting around it up to date.
z At the beginning of every routine, it is helpful to provide standard, boilerplate comments,

indicating the routine's purpose, assumptions, and limitations. A boilerplate comment should be a
brief introduction that explains why it exists and what it can do. It is required that you use the XML
commenting feature of .NET to accomplish this. Using XML style comments will allow the
code to be preprocessed to produce and English language manual of the code. It will also
enable the IDE in .NET to provide on -the-fly information as you reference the commented items.

See further down this document for specific information on the use of XML comments.
z Avoid adding comments at the end of a line of code; end-line comments make code more
difficult to read. However, end -line comments are appropriate when annotating variable
declarations, in which case, align all end -line comments at a common tab stop.
z Block comments should be surrounded in a typographical frame of the following configuration:

//*** *
//
//
//
//
//*** *

With the actual comments placed on the lines between the bounds. Such a structure provides
visual distinction without becoming a maintenance problem (in terms of constantly needing to
reformat code).

z Make liberal use to the //TODO: comment construct. Any comments begun with that text will
appear in the task list in Visual Studio. This means that areas that need work can be readily
identified and not lost in the mass of code.

[Code Example]

//TODO: John Doe should verify that the below value is correct.

Will show up in the task list reminding John Doe of his action item.

z Prior to deployment, remove all temporary or extraneous comments to avoid confusion during
 future maintenance work. In order to facilitate this, any temporary comments (such as ones
 used to temporarily disable sections of code) should be marked with the phrase "REMOVE
 BEFORE DEPLOYMENT", which can then be searched for using your code editor. Such items
 should be marked using the //TODO: comment structure as described above.
z Use complete sentences when writing comments. Comments should clarify the code, not add
 ambiguity.
z Comment as you code because you will not likely have time to do it later. Also, should you get a
 chance to revisit code you have written, that which is obvious today probably will not be obvious

six weeks from now.
z Avoid superfluous or inappropriate comments, inappropriate and offensive language should
 never be used.
z Use comments to explain the intent of the code. They should not serve as inline translations of
 the code. Avoid comments that explain the obvious. Document only operational assumptions,

algorithm insights and so on.
z Comment anything that is not readily obvious in the code.
z To prevent recurring problems, always use comments on bug fixes and work -around code,
 especially in a team environment.
z Use comments on code that consists of loops and logic branches. These are key areas that will
 assist source code readers.
z Throughout the application, construct comments using a uniform style with consistent
 punctuation and structure.
z Separate comments from comment delimiters with white space. Doing so will make comments
 obvious and easy to locate when viewed without color clues.
z Code that is not properly commented as spelled out in this document will not be accepted as a

deliverable, irrespective of whether or not the author is an internal DHSS employee or an
outside contractor.

XML Comments

Note: portions of this section were adapted from the online documentation for XML comments
provided by Microsoft.

XML comments are a powerful feature of .NET that are especially useful when used in conjunction
with the Visual Studio.NET development environment. The .NET framework alone supports the ability to
extract XML comments into documentation files that can be incorporated as part of an application's
written documentation. Visual Studio.NET goes beyond that by actually using XML comments within the
integrated development environment (IDE) to provide on-the-fly information to developers.

Because of the power that XML comments provides, their usage is required in all DHSS applications.
This section outlines how to implement them to a minimum degree of acceptability. It does not cover all
the possibilities of XML comments and within the minimum acceptable constraints, developers are free
to innovate further.

The most basic XML comment has the form of:

/// <summary>
/// Developer supplied description of the item being commented. ///
</summary>

Every line of an XML comment must begin with the sequence "///" and occurs on the line preceding
the item that is being commented. In the Visual Studio.NET editor, if the programmer types the first

three "///" characters, it will automatically fill in a skeleton XML comment containing a summary tag
(and in some cases, other tags).

There are a number of tags that can be used other than the <summary> element, but it should be
considered the minimal tag needed for an XML comment at DHSS for all elements that require
comments. The contents of the summary tag must be a relatively short but descriptive summary of
the item being commented.

If the item being commented is a method/function, the skeleton comment generated by Visual
Studio.NET will also contain tags to contain descriptions of the parameters passed to a function and the
return value of the function (if applicable). If the item being commented is indeed a
method/function, then it is required for these tags to be filled in as well. An example of this follows:

/// <summary>
/// Developer supplied description of the item being commented. ///
</summary>
/// <param name="firstParameter">Developer supplied description of ///
the first parameter to the method.</param>
/// <param name="secondParameter">Developer supplied description ///
of the second parameter to the method.</param>
/// <returns>Developer supplied description of the return
/// value of the method</returns>

The effect that supplying these comments will have in the Visual Studio.NET IDE is that when you
now hover your mouse cursor over an object name in code, it will display the content of the summary.
Also, when entering methods in code that have had their <param> elements defined, the code
completion display will show those descriptions. This sort of information is extremely useful and
speeds coding by preventing the developer from a need to constantly refer to the declarations of
methods/functions in other code locations. It can also reduce errors by ensuring that the developer
understands the implications of the method/function he is calling.

As for what items to actually supply comments, developers are required to supply XML comments for
every class and every class data member and method (irrespective of access qualifiers). For classes
and data members, only the <summary> is required, for method comments, the <param> elements are
required as well. If the item is a private data member, the summary must indicate which public property
(if any) through which it is accessed. If the item is a public property, the summary must
describe the nature of the property but must not refer to the private data member (as this would
violate encapsulation). If it is the case that a member has specific restrictions (such as read-only), that
information must be provided in the summary as well.

Note: though the Visual Studio.NET IDE does much in supplying the skeleton comments when
entering the initial comment delimiters, it should be remembered that if a method's signature changes at
a later date, <param> elements may need to be removed or added.

The <remarks> element is another useful element but its usage is not always required. It should be
used where there are relatively long blocks of text that may be useful in printed documentation but are
not required for on-the-fly display. An example of its usage is:

/// <summary>
/// Developer supplied description of the item being commented. ///
</summary>
/// <param name="firstParameter">Developer supplied description of ///
the first parameter to the method.</param>
/// <param name="secondParameter">Developer supplied description

/// of the second parameter to the method.</param>
/// <returns>Developer supplied description of the return ///
value of the method</returns>
/// <remarks>Some very long text that would describe things
/// like operational assumptions, where further documentation may be found, ///
the expected type of input and output, and so on.</remarks>

As with the prior specifications on commenting, code that is not properly XML commented as spelled out
in this document will not be accepted as a deliverable, irrespective of whether or not the author is an
internal DHSS employee or an outside contractor.

DHSS .NET Development Manual
Accessibility Guidelines
All HTML pages used in DHSS applications (including those automatically generated as part of a
ASP.NET application) must be HTML 4.01 Transitional compliant and meet all WCAG 1.0 Priority 1
Checkpoints.

All WCAG 1.0 Priority 2 and 3 Checkpoints must be met as well whenever possible with the exception of
those checkpoints that are qualified with "Until user agents... ." Note: "running out of time" is not an
acceptable reason for failure to meet these checkpoints. The only acceptable reason for not meeting
these checkpoints is if ASP.NET literally cannot be made to take the required action. Any waiver of
meeting this requirement will require written permission from the Director of IRM and the DHSS
Manager of Base Technology. Development should always be done as if these will be required and not
based on the assumption that a waiver will be granted, as it generally will not be.

Developers are strongly advised to avail themselves of the validation tools described in "Appendix B:
Tools" in order to insure compliance with these requirements.

DHSS .NET Development Manual
Application Testing Guidelines and Procedures

This section is still under construction.

DHSS .NET Development Manual
Vendor/Contract Guidelines
Vendors are held to the same standards as employees of DHSS in the terms of development
standards. Any deliverable which fails to meet these standards will NOT be considered a completed
deliverable. Exceptions to this policy can only be granted by the Director of IRM and the DHSS
Manager of Base Technology and will require a written submission of the request for each exception
including a detailed explanation of why the exception is required.

The purchase of any tools, books, training or other materials used for application development is
always considered the responsibility of the contracting vendor.

If any tool other than the .NET Framework SDK, Visual Studio 2005, CSE HTML Validator, Bobby,
and/or FxCop will be required for the proper maintenance and functioning of the system being
developed, written permission for its use must be obtained from the Director of IRM and the DHSS
Manager of Base Technology before it is used.

Though vendors are of course responsible for their own training resources, it is recommended that
those that want to make themselves as familiar as possible with the DHSS .NET culture start by
reviewing the books outlined in the section of this manual called "Appendix D: Recommended
Sources for Further Information". An understanding of these works will give vendors a common
ground with the managers and developers working in .NET at DHSS.

DHSS .NET Development Manual
DHSS Unified Application Authentication and Authorization
General Information and Methodology

In an effort to reduce redundant coding and increase security, DHSS has implemented a unified
application authentication and authorization framework. This system is a hybrid of Windows 2003
domain based authentication and application managed authorization. This means that users are
identified by the supply of a Windows 2003 login name and domain password and then a SQL Server
2000/2005 database supplies application-specific role and scope information to applications subscribing
to the system.

This approach was selected based on a desire to supply "single sign-on" capabilities in as much as
was possible while not being tied to the unfriendly features of managing Windows 2003 network
groups as role indicators. This means that not only can .NET applications use the system, but also
almost all applications written in any modern programming language (there are specific concerns
around subscribing a non -.NET application to this system though which are not covered in this
manual and should a developer desire to subscribe to the unified system, he should speak with the
DHSS Base Technology Manager on how best to implement its features).

The unified system is related and tied to another system known as the IRM Authorization System
(IAS) which is used for the management of user accounts/profiles in applications. Details on IAS are
outlined in other documents available from DHSS.

The basic components of the unified system is a web service that interfaces with the apps.dhss
domain for authentication/identification and with the SQL Server 2000/2005 database for
role/scope
information. Additionally, there are two assemblies from the DHSS Global Assemblies that are
required for applications to subscribe if .NET based (any language can use the web service
component though).

One benefit of this system is that is minimizes the number of times that a user's "true" password is
passed across the network. In effect, after initial authentication, the system issues the user a "session
key" that is only valid for as long as the user remains active. The session key is, in effect, a temporary
password. The result of this is that application handling of real passwords is reduced while providing the
continuous authentication that an asynchronous system that uses web services requires.

A model of the unified system (when applied to a .NET application) is depicted thusly:

The general flow of the system is as follows (actual step by step instructions on implementation of this in
an application follow at the end of this section):

1. The user access the application's presentation layer login page.
2. The user supplies his login name and apps.dhss domain password to the application.
3. The application presentation layer passes the login name and encrypted password to the unified
 system web service.
4. The unified system web service first authenticates the password against the apps.dhss domain.
5. If the password is valid, the unified system then access the database store to create a session
 key and passes that back to the application presentation layer.
6. The presentation layer stores the login name and the session key in a web session for later use.
7. On each call to its web service layer, the application passes the login name and the session key
 in the WS-Security username token.
8. WS-Security on the application web service layer validates the session key automatically.
9. Within the specific web method, developer supplied code reconstitutes a DHSSPrincipal object
 based on the login name and session key.

10. Developer supplied code instantiates a PrincipalPermission object that indicates what
 identity/role/scope is required for execution of the web method.
11. The developer performs a SecurityAction.Demand to validate the current user against the

permission object. If the current user does not meet the criteria required, then an exception is
thrown. If the current user does indeed meet those criteria, then execution continues as
expected.

Implementation Details

Following are step -by -step instructions on how add the DHSS Framework components necessary for
using the unified system in your .NET application.

For Presentation Layer Projects

1. Add a reference for "DHSSAuthorization" (general instructions on this process can be found in
 the section titled Appendix E: DHSS Global Assemblies).
2. Add Web Services Extensions to your project as per the instructions in Appendix F: Web

Services Extensions at DHSS.
3. Add the following entry within the <appSettings> element of your applications web.config file:

<add key="DHSSAuthorization.AuthorizationService.AuthorizationWS"
value="http://unifiedAuthorization.dhss.state.de.us/AuthorizationWS.asmx"/>

4. Find the <authentication> element in the web.config file and change the mode to "Forms" Within

that element, add the following entry:.

<forms loginUrl="login_file_name" name="authorizationCookie" timeout="60"
path="/" />

where "login_file_name" is replaced with the name of the aspx file that serves as the login page for
your application.

5. Find the <authorization> element in the web.config file and add the following element within it:

<deny users="?" />

6. Add the following to the using section of your global.asax.cs file:

using System.Web.Security;

using DHSS.Framework.Security;

7. Implement the following code in your global.asax.cs file:

protected void Application_AuthenticateRequest(Object sender, EventArgs e)
{

// Extract the forms authentication cookie
string cookieName = FormsAuthentication.FormsCookieName;
HttpCookie authCookie = Context.Request.Cookies[cookieName];
if(null == authCookie)
{

// There is no authentication cookie.
return;

}

FormsAuthenticationTicket authTicket = null;
try
{

authTicket = FormsAuthentication.Decrypt(authCookie.Value);
}

catch(Exception ex)
{

// Log exception details (omitted for simplicity)
return;

}
if (null == authTicket)

{
// Cookie failed to decrypt.
return;

}

// This principal will flow throughout the request.
DHSSPrincipal principal = new DHSSPrincipal(authTicket.Name, authTicket.UserData)
// Attach the new principal object to the current HttpContext object
Context.User = principal;

}

8. Add the following to the using section of your login_file_name.aspx.cs file:

using System.Web.Security;

using DHSS.Framework.Security.AuthorizationService;
using DHSS.Framework.Security;

9. Implement the following code in your login_file_name.aspx.cs (see comments in the code for
 parts that require customization to your application):

private void DHSSAuthenticateUser()
{

//this sets up a variable to store an output parameter from the
//DHSSFormsAuthentication library
HttpCookie authCookie;

//replace <your_application_name> below with the unique application
//key name for your application

AuthorizationSession authorizationSession =

DHSSFormsAuthentication.AuthenticateForm(txtUserName.Text,
txtPassword.Text,
"<your_application_name>",
out authCookie);

if (authorizationSession == null)
{

//a null here means that the system failed to authenticate the user
//within this if statement, execute the actions you wish to take in this
//event (such as notifying the user via a message on his screen, for example
lblMessage.Text = "Your login failed. Please try again!";
return;

}

Session["AuthorizationSession"] = authSession;

Response.Cookies.Add(authCookie);
// Redirect the user to the originally requested page

Response.Redirect(FormsAuthentication.GetRedirectUrl(authorizationSession.UserName
}

10. Any actions you execute to log a user in should execute the DHSSAuthenticateUser method
 before it takes any other actions. This would often be done within the code for a "Login" button
 on the login screen, but may take other formats as well.

For Web Service Layer Projects

1. Add references for "DHSSPasswordProvider" and "DHSSAuthorization" (general instructions on
 this process can be found in the section titled Appendix E: DHSS Global Assemblies).
2. Add Web Services Extensions to your project as per the instructions in Appendix F: Web
 Services Extensions at DHSS.
3. Add the following entries within the <appSettings> element of your applications web.config file:

<add key="DHSSAuthorization.AuthorizationService.AuthorizationWS"
value="http://unifiedauthorizationTEST.dhss.state.de.us/AuthorizationWS.asmx"/>
<add key="DHSSPasswordProvider.AuthorizationService.AuthorizationWS"
value="http://unifiedauthorizationTEST.dhss.state.de.us/AuthorizationWS.asmx"/>

Please note that these implementation details only enable your application for the basic framework on the
unified system (i.e., logging into the application), there are specific coding steps that are
necessary for actually limiting the execution of code in your application or web service to particular user
groups. These steps are covered in Securing Web Services at DHSS.

* Note as of April 2008 DHSS is currently working on supplying a .NET Server Controls to consolidate the
above logic for implementation. Please contact the DHSS Base Technology group for more information.

DHSS .NET Development Manual
Securing Web Services at DHSS

Before reading this section of the DHSS .NET Development Manual, you should familiarize yourself
with the section DHSS Unified Application Authentication and Authorization as it contains important
prerequisite instructions needed for the implementation of secure web services.

Prior to performing the steps below, you must have already completed the steps described in
Appendix F: Web Services Extensions at DHSS and Appendix E: DHSS Global Assemblies.

Once your application has the basic framework for supporting the unified system login, your
application presentation layer has become, in essence, secure, but the web services supporting it are still
open to public discovery. Though to some degree the hazard of intrusion is limited by the fact that web
services are located behind the state fire wall and removal of the HTTP-GET and HTTP-POST methods
of accessing production web services (both of which are indeed important steps and should not be
ignored), the possibility does remain that a programmer with the right tools could use your web services
to insert spurious data into your system.

To further prevent intrusion, web services in use at DHSS are required to implement at least a
minimal level of "on-going authentication", i.e., a check to determine if a user is valid (that is,
authenticated) upon every execution of a web method from a web service. The steps to perform this are
as follows (these instructions assume that the developer has already implemented all prerequisite steps
previously described like enabling the framework, adding appropriate references, and so on):

Before beginning the steps listed below, add a reference to each web service project for the
DHSSAuthorization and DHSSPasswordProvider assemblies.

Note: each of these steps must be implemented in every web method that your service(s) expose.

1. Add the following using statements to each web service class file (if not already present):

using System.Security.Principal;
using System.Security.Permissions;
using System.Threading;
using Microsoft.Web.Services;
using DHSS.Framework.Security;

2. Add as the first line in each web method the following code:

Thread.CurrentPrincipal = new DHSSPrincipal(HttpSoapContext.RequestContext);

The addition of this single line will immediately secure your web method to some degree in that
any client executing the method will now be required to possess a valid session key. In some
applications (especially simple and relatively wide-open ones), this may be appropriate. The
addition of this code should be considered the minimum acceptable standard for DHSS web
services for any system that requires a secure system (the only exceptions to this practice
would be non-authenticated interactive web sites that are open to the public and do not require
that users reading or providing data be authenticated).

3. Add the following two lines immediately following the above line:

PrincipalPermission myPermission = new PrincipalPermission(userName, roleName, true)

myPermission.Demand();

The placeholders userName and roleName should be replaced with strings containing the User
Login name and/or roles that you wish to allow to execute the web method. If you only wish a
specific user to execute the web method, then provide that name for the userName and pass "null"
for the roleName. The reverse situation also applies if you wish to allow execution to any member
of a role and not a specific user. If values for both are passed, then execution will only be allowed
for the specific user if he belongs to the role specified. If the user executing the web method does
not meet all the conditions of the PrincipalPermission object, an exception will be thrown back to
your presentation layer application. Your application should catch these
exceptions and provide user friendly output as to their nature.

The above steps constitute the basic premises of securing web services. It is possible to perform
more complex testing (such as testing membership in any of a number of different roles). The basic
approach is to create multiple PrincipalPermission objects and then perform a Demand() action on the
union of those objects. Examples of this behavior can be found in the PrincipalPermission
documentation on MSDN.

Once the web services are secure, you will need to enable your application so that is passes the
required authentication information to the web service when calling web methods. The following steps
describe that process.

Web Form Specific Steps

These steps needed to be completed once for each web form in your application that called web
service web methods: (Before beginning the steps listed below, add a reference to each web form
project for the DHSSAuthorization assembly).

1. Add the following to the "using" section at the top of the code file:

using Microsoft.Web.Services;
using Microsoft.Web.Services.Security;

using DHSS.Framework.Security.AuthorizationService;

2. Add protected members to handle authorization information to the class of your Web Form
 using the following code:

protected AuthorizationSession authorizationSession;
protected UsernameToken myUsernameToken;

3. Add the following lines to your Web Form's Page_Load event (these will generally be the first
lines of code executed):

authorizationSession = (AuthorizationSession)Session["AuthorizationSession"];
myUsernameToken = new UsernameToken(authorizationSession.UserName,

authorizationSession.SessionKey,
PasswordOption.SendPlainText);

This extracts the AuthorizationSession from the web session object created during the login
process described in DHSS Unified Application Authentication and Authorization and will enable
your application to pass the information stored their to web services (specifically, the user name
and session key).

4. Instantiate your web service proxy or proxies as you normally would and immediately after the
 instantiation, add the following code for each web service proxy (for the purposes of this
 example, it is assumed that your proxy object is named "myProxy", that name should be
 changed as appropriate to the context of your application and would generally be some name
 that reflects the content of the web service):

myProxy.RequestSoapContext.Security.Tokens.Add(myUsernameToken);

* Note Web Services are not prohibited, but should be used if data or methods used from the service will
be used by other applications. For general remote procedure calls .NET Remoting is used. See the
DHSS Web Application Template documentation appended to this document for more details.

DHSS .NET Development Manual
Appendix A: Definitions
Capitalization Styles Defined

There are three possible capitalization styles:

Pascal case

The first letter in the identifier and the first letter of each subsequent
concatenated word are capitalized.

Example: BackColor,DataSet

Camel case

The first letter of an identifier is lowercase and the first letter of each
subsequent concatenated word is capitalized.

Example: numberOfDays, isValid

Uppercase

All letters in the identifier are capitalized.

 Example: ID, PI

Hungarian Type Notation Defined

Hungarian notation is any of a variety of standards for organizing a computer program by
selecting a schema for naming your variables so that their type is readily available to
someone familiar with the notation. It is in fact a commenting technique.

Example: strFirstName, iNumberOfDays

There are different opinions about using this kind of type notation in programming
nowadays. Some say that it's useful, and it should be used everywhere to enhance clarity of
your code. Others say it just obfuscates your code, because it has no real advantage in

modern programming environments.

Our point of view is a moderated one: use it wisely, meaning, we only use Hungarian
notation for items where type may be unclear and necessary. In effect, this means that the
notation is only used in the declaration of visual form objects. Hungarian notation is
unnecessary for primitive types in C# because variables are generally declared and used in
the same code blocks, meaning that the type of the variable is already within easy
reach. There are some exceptions to this general rule, but the trade -off in code clarity and
ease of reading makes dropping the ubiquitous type prefixes of older languages worthwhile.
The end of this document lists the prefixes that should be used for these type of objects.

There are however some prefixes not related to type determination that are standard.
These are explained in other parts of this manual. They are distinct from the prefixes
previously discussed because rather than indicating type, they indicate scope.

Definitions of the Types of Web Form Controls

When you create Web Forms pages, you can use the User controls and the HTML Server controls.
Each of these controls is explained in the following sections. Any page may contain one or both of
these types of controls.

User Controls

Controls that you create as Web Forms pages. You can embed Web Forms user controls in
other Web Forms pages, which is an easy way to create menus, toolbars, and other
reusable elements.

HTML Server Controls

HTML server controls are HTML elements containing attributes that make them visible to,
and programmable on, the server. By default, HTML elements on a Web Forms page are
not available to the server; they are treated as opaque text that is passed through to the
browser. However, by converting HTML elements to HTML server controls, you expose
them as elements you can program on the server.

The object model for HTML server controls maps closely to that of the corresponding
elements. For example, HTML attributes are exposed in HTML server controls as
properties.

Any HTML element on a page can be converted to an HTML server control. Conversion is a
simple process involving just a few attributes. As a minimum, an HTML element is
converted to a control by the addition of the attribute RUNAT="SERVER". This alerts the
ASP.NET page framework during parsing that it should create an instance of the control to
use during server -side page processing.

The page framework provides predefined HTML server controls for the HTML elements most
commonly used dynamically on a page: forms, the HTML <INPUT> elements (text box,
check box, Submit button, and so on), list box (<SELECT>), table, image, and so on. These
predefined HTML server controls share the basic properties of the generic control, and in
addition, each control typically provides its own set of properties and its own event.

Note: In some situations, server controls require client script in order to function properly.
If a user has disabled scripting in the browser, the controls might not function as you
intend.

HTML server controls offer the following features:

1. An object model that you can program against on the server using the familiar object -oriented
techniques. Each server control exposes properties that allow you to manipulate the control's HTML
attributes programmatically in server code.
2. A set of events for which you can write event handlers in much the same way you
 would in a client-based form, except that the event is handled in server code.
3. The ability to handle events in client script.
4. Automatic maintenance of the control's state. If the form makes a round trip to the
 server, the values that the user entered into HTML server controls are automatically
 maintained when the page is sent back to the browser.
5. Interaction with validation controls so you can easily verify that a user has entered
 appropriate information into a control.
6. Data binding to one or more properties of the control.

7. Support for HTML 4.1 styles if the Web Forms page is displayed in a browser that
 supports cascading style sheets.
8. Pass -through of custom attributes. You can add any attributes you need to an HTML
 server control and the page framework will read them and render them without any
 change in functionality. This allows you to add browser -specific attributes to your
 controls.

Other Definitions

Note: some of these definitions are specific to methodologies in use at DHSS. They should not
always be assumed to apply generically to the rest of the world.

Static Web Site
A web site in which the content and information is largely or wholly fixed and does not change
from moment to moment. This generally means that content is only changed due to the actions of
a developer or content writer. These sites are generally open to the public, though in some cases
the definition of "public" may vary.

Interactive/Dynamic Web Site
A web site in which some significant portion of the content presented varies based on user
input. Though this type of web site often features web forms, the forms are often used only for
transitory input and the data captured is often not considered reliable. These types of sites are
differentiated from browser based applications by the fact that even if they are password
protected, there is no process in place to limit access to genuinely identifiable individuals.

Browser Based Application
Systems or web servers engineered in such a way that they are only accessible to specifically
identifiable users where such identity has been established through a formal, human controlled
process. Such systems are used for the collection and maintenance of important data that
needs a high degree of reliability.

Layer
A logical division within an application. Does not mean the same thing as "tier"

Tier
A physical division within a distributed application. Does not mean the same thing as "layer"

Business Entity (BE) Classes
Classes/structures that are used for the transfer of data between layers of the application.

Business Logic Layer (BLL) Components
Classes that represent an object -oriented view of the application. Also known as the "Domain
Model".

Data Access Layer (DAL) Components
Classes that provide a simple interface to the database. These classes do not contain business logic.

DHSS .NET Development Manual
Appendix B: Tools
Development Tools

The .NET Framework version in use at DHSS is 1.1 and 2.0 as of April 2008. However, this will be kept
up to date with whatever the most current version happens to be.

DHSS employees currently use Visual Studio 2005 – Professional Developer's Edition - for actual
programming. In some cases, there is development using a simple text editor (generally TextPad 4.x)
and the .NET Framework command line compilers. Generally other parties developing for DHSS will be
expected to use one of these two methods, but exceptions may be made in certain cases. All
developers must be sure to keep their copies of Visual Studio up to date with all Microsoft issues
patches and updates.

Many applications at DHSS make use of the ODBC provider for .NET, this is perfectly acceptable for
access to non OLE DB compliant databases but OLE DB or SQL Server connectivity should always be
used when possible.

Validation Tools

There are several validation tools used by DHSS that will help insure that your code meets these
standards. They are:

CSE HTML Validator

website: http://www.htmlvalidator.com

CSE HTML Validator is used to check pages for HTML 4.01 compliance.

Bobby

website: http://www.watchfire.com/products/desktop/bobby/default.aspx

Bobby is a tool that is used to check pages for compliance with WCAG Priority Checkpoints.

FxCop

website: http://www.gotdotnet.com/team/fxcop/

FxCop is a tool that validates .NET code against a set of industry standard guidelines.

Using These Tools

Please be advised that in some cases, these tools may have more or less restrictive guidelines than
those outlined in this document. Their output should always be weighed against what the DHSS
standards say.

It is HIGHLY recommended that all developers creating applications for DHSS use these tools as it
will help catch many standards failures. Furthermore, it is also HIGHLY recommended that these
tools be used from the very beginning of the project and on a regular basis to keep any fixes required to
a manageable level. Developers who wait till the end of their project to use these tools will likely find that

http://www.htmlvalidator.com/
http://www.watchfire.com/products/desktop/bobby/default.aspx/
http://www.gotdotnet.com/team/fxcop/

significant retooling will be required to achieve compliance.

Recommended Settings for Visual Studio

z Always build your projects with warning level 4 (the VS.NET default). z
Treat warnings as errors in all builds (this is NOT the VS.NET default). z
Never supress specific compiler warnings (VS.NET default).

DHSS .NET Development Manual
Appendix C: Hungarian Notation Prefixes

Object Prefix
Textbox txt
Label lbl
Button btn
List Box lst
Drop Down List Box ddl
Radio Button rb
Check Box cb
Check Box List cbl
Radio Button List rbl
Panel pnl
Link Button lbt
Data Grid dtg
Reapeater rpt
Data List dlist
Validator valid

Note: should it be necessary to add to or correct the above list, please e -mail the current maintainer
as named at the head of this document.

DHSS .NET Development Manual
Appendix D: Recommended Sources for Further Information

Many of these works served as references during the development of the DHSS .NET Development
Manual. Others are useful tools in day -to-day work with the .NET Framework.

Microsoft.com

http://www.microsoft.com/ - The creator of the .NET framework and Visual Studio.

Microsoft's Patterns and Practices Site

http://www.microsoft.com/patterns/ - Site with extensive information on good design procedures for
.NET applications.

Enterprise Solution Patterns Using Microsoft.NET

http://msdn.microsoft.com/architecture/patterns/default.aspx?pull=/library/en -
us/dnpatterns/html/Esp.asp - One of the most important works on understanding that nature of
designing .NET applications.

Application Architecture for .NET - Designing Applications and Services

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp?frame=true A
good exploration on the nature of layered and distributed applications.

Building Secure ASP.NET Applications

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/secnetlpMSDN.asp?
frame=true - A massive work covering nearly every aspect of creating secure ASP.NET system.

ASP.NET web site

http://www.asp.net/ - A developer community web site that features tutorials and information on
ASP.NET, including chat boards to post questions to other developers.

GotDotNet

http://www.gotdotnet.com/ - A developer community web site that features information and discussion on
all .NET aspects.

.NET Framework Essentials, 3rd Edition

http://www.oreilly.com/catalog/dotnetfrmess3/ - Covers the general mind set of the .NET framework and
should be the first book that any person reads when entering the .NET field, also the first of three
essential books for DHSS .NET developers.

Programming C#, 3rd Edition

http://www.microsoft.com/
http://www.microsoft.com/patterns/
http://www.asp.net/
http://www.gotdotnet.com/
http://www.oreilly.com/catalog/dotnetfrmess3/

http://www.oreilly.com/catalog/progcsharp3/ - A seminal work on the C# programming language, the
second of three books with which all .NET developers at DHSS should be familiar.

Programming ASP.NET, 2nd Edition

http://www.oreilly.com/catalog/progaspdotnet2/ - Excellent introduction to programming in ASP.NET.
The third of three books that should be read by all DHSS .NET developers.

Programming .NET Web Services

http://www.oreilly.com/catalog/prognetws/ - An important work for any developers that will be creating
web services using .NET. It can also be extremely useful for programmers that will be consuming web
services in fostering an understanding of the underlying framework.

The Code Project

http://www.codeproject.com/ - Library of articles and code samples for many development
environments, including .NET.

NUNit.org

http://www.nunit.org/ - Automated unit -testing framework used at DHSS.

CodeSmith Web Site

http://www.ericjsmith.net/codesmith/ - CodeSmith is a tool for generating code based on user-defined
templates. It is a powerful tool for speeding .NET Applications Development.

DHSS .NET Development Manual
Appendix E: DHSS Global Assemblies

There are a number of in-house developed custom assemblies that are used throughout DHSS .NET
applications. These assemblies will be delivered through the means of the DHSS Web Application
Template.

Note to off-site vendors: copies of these assemblies will be provided to you upon commencement of any
development project for DHSS. Since these copies will be independent of the central location at DHSS, it
is the responsibility of vendors to insure that their copies are always kept up to date with any changes in
the central location copies.

DHSS .NET Development Manual
Appendix F: Web Services Extensions at DHSS

DHSS has made a strategic decision to use the WS -Security standard of Web Services Extensions
(WSE) to control access to web services so that they are secure and only allow access from properly
authenticated clients.

DHSS uses WSE version 1.0 Service Pack 1. There is currently a WSE 2.0 version circulating but it
has not been released for production usage. Therefore it is not allowed in DHSS applications until such

http://www.oreilly.com/catalog/progcsharp3/
http://www.oreilly.com/catalog/progaspdotnet2/
http://www.oreilly.com/catalog/prognetws/
http://www.codeproject.com/
http://www.nunit.org/
http://www.ericjsmith.net/codesmith/

time as it has been released for production.

Environment Specific Steps

The following steps will only need to be done once for each developer PC.

1. Shutdown Visual Studio.NET.
2. Install Web Services Extensions (WSE) Service Pack 1 (SP1).

{ Download and save the file WSE10SP1.exe to your desktop.
{ Run the file you saved by double-clicking it. Accept all the defaults for the installation
process.

Project Specific Steps

The following steps will need to be done at least once for every project that uses WS-Security, this
will generally include both client side/UI layer applications and web services/business layer
applications.

1. Start Visual Studio.NET.
2. Open your solution/project.
3. Add appropriate references to your project:

{ Select the project name in the solution explorer. {
Go to the Project ->Add Reference... menu
{ In the dialog that appears, scroll to find the assembly "Microsoft.Web.Services". {
Click the assembly name and then click the "Select" button.
{ Click "Ok".

4. Repeat the above steps for the DHSSAuthorization assembly.
5. Modify your project's web.config file. (Only required on web services projects).

{ Open the web.config file for your project by double -clicking its name in the solution
explorer.
{ In the following entries to add to the web.config file, items may appear on multiple lines

because of web page formatting, however, they should always be entered on one line per
entry. Also, if your web.config file already contains a given parent element, then the child
element should be added into the existing parent element of the same type.
{ Add the following entry immediately after the <configuration> element:

<configSections> <section name="microsoft.web.services"
type="Microsoft.Web.Services.Configuration.WebServicesConfiguration,
Microsoft.Web.Services, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" /> </configSections>

{ Add the following entry at a later point in the <configuration> element:

<microsoft.web.services> <security> <passwordProvider
type="DHSS.Framework.Security.DHSSPasswordProvider,
DHSSPasswordProvider" /> </security> </microsoft.web.services>

Note that this entry will require the addition of a reference to your project for the
DHSSPasswordProvider assembly. Instructions for this process are outlined in the section of
this manual Appendix E: DHSS Global Assemblies.

{ Add the following entry as the first item inside the <system.web> element:

<webServices> <soapExtensionTypes> <add
type="Microsoft.Web.Services.WebServicesExtension,
Microsoft.Web.Services, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" priority="1" group="0" />

</soapExtensionTypes> </webServices>

6. Modify your project's web references' "Reference.cs" file(s):

{ Note that if you add new web references to your project at a later date or if you
regenerate/update the code for existing web references, you may need to reperform the
following steps.

{ Shutdown Visual Studio.NET.
{ Web reference code is contained within a sub-folder of your project directory called "Web
References" which then in turn contains a sub-folder for each web service referenced named
after the web service. You will need to go into each sub -folder of "Web
References" and edit the file "Reference.cs" using any text editor.
{ In "Reference.cs", search for the text

"System.Web.Services.Protocols.SoapHttpClientProtocol" and replace it with the text
"Microsoft.Web.Services.WebServicesClientProtocol".

{ Save the "Reference.cs" file(s).

Developers should refer to the sections of this manual DHSS Unified Application Authentication and
Authorization and Securing Web Services at DHSS for further information on how WS-Security is used
to secure applications at DHSS.

DHSS .NET Development Manual
Appendix G: Frequently Asked Questions about DHSS .NET
Development
This section is a repository of questions that have come up regarding matters in this manual. Some of
them simply clarify items while others offer justifications for why a policy is what it is. Though the
DHSS applications management team is always interested in the free discussion of the policies of this
manual (and more than willing to revise our positions when necessary), this should not be viewed as an
open invitation for debate.

My application is really small, only meant for temporary use, is unimportant, and/or
doesn't really need to be worried over too much. Do these policies still apply? Why so
much fuss over something like that?

The short answer is that yes, these policies apply irrespective of the perceived size and
importance of your application.

There are a number of reasons that DHSS requires a consistent framework for all of its
application, some of them are:

z A consistent framework allows staff to move between applications with a minimum of
effort, reducing retraining and maximizing productivity.
z Applications have a tendency to grow beyond their intended purposes. Therefore, today's
small, throw-away application may become a critical system tomorrow.
z Some of our policies enforce security considerations that apply no matter how important the
application is.

Why do you require that all database interaction take place within the context of a
web service?

One requirement of our security model is the use of a multi -tiered setup for all applications. This
hides as much code as possible from the eyes of the public world. Having all database
operations coming from web services located in a secured zone accomplishes this and allows
the lock down of all but minimal communications protocols from the outside world into our
network.

Aren't there other ways to effect the multi-tiered application model you describe
above without using web services/.NET Remoting?

Most assuredly there are other methods. The use of web services/.NET Remoting though offer
the most open environment so that if non-.NET applications ever require access to the resources
as well, no other work on the application tier will be required.

Why do you not allow any business logic to reside within stored procedures? Isn't it
the case that placing business logic in stored procedures could reduce the
number of database round-trips required for operations?

This question over stored procedures has spurred much debate in the industry. Those in favor of
the practice usually point out that having the business logic on the database server can
minimize round -trips to the database and that the logic can be shared amongst all applications
that may access the data, reducing the need to maintain multiple code sets.
DHSS has fallen in the other camp though, and for good reasons. Writing robust logic into SQL
procedural language is difficult and prone to errors. When errors are discovered, they are
difficult to debug. For those reasons, it means it is often unfeasible to have ALL business logic

reside in the stored procedures. Keeping all of the business logic in one layer is an important
consideration for maintainability, so DHSS has decided that since all logic cannot reside at the
database server, it must entirely reside elsewhere.

The DHSS framework places all business logic at the application server tier. Done this way, it
actually negates the argument for business logic stored procedures reducing code maintenance
since if all interaction with the database takes place from that tier, no application need ever
repeat the code, all run the code from the application tier.

Another reason for keeping logic away from the database server is that database servers
remain the most finite of resources involved in .NET applications (and really in any sort of
application). It is relatively easy to add more processing power to the application and web tiers of
an application but extremely difficult to add more to the database tier. This means that it is in our
interest to keep processing on the database tier to a minimum and thereby maximize the
scalability of our applications.

Finally, though the argument that reducing database server round-trips does have merit, it is the
simple case that the other factors against the practice of business logic in stored procedures
outweigh it as a hazard. It is important to remember here that the guiding principle of DHSS
application development is in increasing maintainability with speed optimization remaining a
secondary concern.

DHSS .NET Development Manual

Appendix H: DHSS Framework/Template

All web applications developed by and for DHSS must utilize the DHSS Framework and
Template standards. This information can be obtained through the Division of
Management Services/Information Resource Management Technical Project Manager
upon a contract being signed by all parties and a DHSS Non-Disclosure Agreement
(below) signed by the vendor.

Division of Management Services
“DMS – Serving Those Who Serve Delaware”

Information Resource Management

NON-DISCLOSURE
AGREEMENT

As a condition of receiving access to State of Delaware information technology
policies and standards, vendor hereby agrees to the following:

1. That the disclosure of Information by State of Delaware is in strictest
confidence and thus vendor will:

a. Not disclose to any other person this Information.
b. Use at least the same degree of care to maintain the Information secret
as the vendor uses in maintaining as secret its own secret information, but
always at least a reasonable degree of care.
c. Use the Information only for the purpose of preparing a response to a
State of Delaware Request for Proposal.
d. Restrict disclosure of the Information solely to those employees of
vendor having a need to know such Information in order to accomplish the
purpose stated above.
e. Advise each such employee, before he or she receives access to the
information, of the obligations of vendor under this Agreement, and require
each such employee to maintain those obligations.
f. Within fifteen (15) days following request of State of Delaware, return to
State of Delaware all documentation, copies, notes, diagrams, computer
memory media and other materials containing any portion of the
information, or confirm to State of Delaware, in writing, the destruction of
such materials.

2. This Agreement imposes no obligation on vendor with respect to any portion of
the Information received from State of Delaware which was known to the vendor
prior to disclosure by State of Delaware.

3. The Information shall remain the sole property of State of Delaware.

Vendor Name _____________________________________

Vendor Representative Name: _____________________________________

Signature: _____________________________________

Vendor Representative Title: _____________________________________

Date: _______________

	dhssdotnetmanual.pdf
	AppendixH.doc
	Non Disclosure.doc

